

电力工程 / 铁路运输 / 石油化工 / 水利水电 / 航天航空 / 高校

尊敬的顾客

感谢您购买本公司产品。在您初次使用该仪器前,请您详细地阅读本使用 说明书,将可帮助您熟练地使用本仪器。

我们的宗旨是不断地改进和完善公司的产品,因此您所 使用的仪器可能与使用说明书有少许的差别。若有改动,我 们不一定能通知到您,敬请谅解!如有疑问,请与公司售后 服务部联络,我们定会满足您的要求。

由于输入输出端子、测试柱等均有可能带电压,您在插拔 测试线、电源插座时,会产生电火花,小心电击,避免触电危 险,注意人身安全!

◆ 慎重保证

本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。 一年(包括一年)内如产品出现缺陷,实行免费维修。一年以上如产品出现缺 陷,实行有偿终身维修。

◆ 安全要求

请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的 任何其它产品受到损坏。为了避免可能发生的危险,本产品只可在规定的范围 内使用。

只有合格的技术人员才可执行维修。

--防止火灾或人身伤害

使用适当的电源线。只可使用本产品专用、并且符合本产品规格的电源线。

正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试 导线。

产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。 为了防止电击,接地导体必须与地面相连。在与本产品输入或输出终端连接前, 应确保本产品已正确接地。

注意所有终端的额定值。为了防止火灾或电击危险,请注意本产品的所有额定值 和标记。在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了 解有关额定值的信息。

请勿在无仪器盖板时操作。如盖板或面板已卸下,请勿操作本产品。

使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。

避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的接点和部位。

在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进 行检查,切勿继续操作。

请勿在潮湿环境下操作。

武汉华意电力科技有限公司

Technology Co., Ltd.

请勿在易爆环境中操作。

保持产品表面清洁和干燥。

一安全术语

警告:警告字句指出可能造成人身伤亡的状况或做法。

小心:小心字句指出可能造成本产品或其它财产损坏的状况或做法。

<i>—`</i> ,	功能特点	6
<u> </u>	技术指标	8
三,	结构外观	10
非月	月户使用,略。	21
五、	使用方法	21
在测	J试过程中要注意的问题:	.22
六、	电池维护及充电	27
七、	注意事项	28

武汉华意电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd 一、功能特点

1、仪器是专门用于检测电网中发生波形畸变、谐波含量、电压波动与闪变
 和三相不平衡等电能质量问题的高精度测试仪器;同时还具备电参量测试、矢量分析的功能。

2、可精确测量电压、电流、有功功率、无功功率、相角、功率因数、频率 等多种电参量。

3、可显示被测电压和电流的矢量图,用户可以通过分析矢量图得出计量设备接线的正确与否。

4、电流采用钳形互感器方式进行测量。因为采用钳形电流互感器测量时操 作人员无须断开电流回路,就可以方便、安全的进行测量。根据用户的测量范 围不同可以选配不同量程的钳表。

5、可测量分析公用电网供到用户端的交流电能质量,其测量分析:频率偏差、电压偏差、电压波动、闪变、三相电压允许不平衡度和电网谐波。

6、可显示单相电压、电流波形并可同时显示三相电压、电流波形。

7、所有测试界面具备屏幕锁定功能,以方便用户读数和分析数据。

8、负荷波动监视:测量分析各种用电设备在不同运行状态下对公用电网电 能质量造成的波动。定时记录和存储电压、电流、有功功率、无功功率、视在 功率、频率、相位等电力参数的变化趋势。

9、电力设备调整及运行过程动态监视,帮助用户解决电力设备调整及投运 过程中出现的问题。 10、能够测试分析电力系统中无功补偿及滤波装置动态参数并对其功能和

技术指标作出定量评价

11、可设置不同的存储间隔时间,按设置的时间间隔连续存储数据;

12、内置大容量数据存储器,按1分钟的时间间隔可连续存储18个月以上, 能满足长期监测试验点的需要。

13、仪器具备 USB 接口,可方便的将数据直接拷贝到后台管理计算机。

14、与功能强大的数据管理软件配合,可将实时采样数据直接上传到后台 管理计算机,在后台进行更全面、更迅速的处理。

15、具备万年历、时钟功能,实时显示日期及时间。可在现场检测的同时 保存测试数据和结果,并通过串口上传至计算机,通过后台管理软件(选配件) 实现数据微机化管理,具备强大的报表功能。

16、采用大屏幕进口彩色液晶作为显示器,中文操作界面并配有汉字提示 信息、多参量显示的液晶显示界面,人机对话界面友好。

17、3分钟无操作液晶显示自动进入省电模式,以便最大程度的延长电池 工作时间。

18、导电硅胶按键,手感好、寿命长、设计合理、操作方便。

19、内置大容量、高性能锂离子充电电池,充满电连续工作10小时以上。

20、体积小、重量轻,便于携带,既可用于现场测量使用,也可用做实验 室的标准计量设备。

武汉华意电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd. 二、技术指标

1、输入特性

电压测量范围: 0~800V, 自动切档。

电流测量范围

钳形互感器 (三种): 5A/25A (标配)

100A/500A(选配)

400A/2000A(选配)

相角测量范围: 0~359.99°。

频率测量范围: 45~55Hz。

电压通道数:三通道 (U_A, U_B, U_C) 。

电流通道数:三通道(I_A、I_B、I_C)。

最大谐波分析次数: 63 次。

1分钟间隔最大连续存储周期: 18个月。

2、准确度

电参量测量部分:

- 电压: ±0.2%
- 频率: ±0.01Hz
- 电流、功率: ±0.5%
- 相位: ±0.2°

电能质量部分:

武汉华意电力科技有限公司

基波电压允许误差≤0.5%F.S. 基波电流允许误差: ≤1%F.S. 基波电压和电流之间相位差的测量误差: ≤0.2° 谐波电压含有率测量误差: ≤0.1% 谐波电流含有率测量误差: ≤0.2% 三相电压不平衡度误差: ≤0.2% 电压偏差误差: ≤0.2%

- 3、工作温度: -10℃~+40℃
- 4、充电电源: AC220V、频率 45Hz-55Hz
- 5、主机功耗: ≤3VA
- 6、电池最大工作时间: ≤10 小时
- 7、绝缘:
 - (1)电压、电流输入端对机壳的绝缘电阻≤100MΩ。
 - (2) 工作电源输入端对外壳之间承受工频 1.5KV (有效值), 历时 1 分钟实验。
- 8、体积: 320mm×240mm×130mm
- 9、重量: 2.0Kg

(一)、外型尺寸及端子布置

仪器外观正视如图:

仪器正面上方是液晶显示器,下方是按键区,顶端为接线部分,右侧为其 -10武汉华意电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd. 它端口(通讯、充电、USB)区域。

顶端接线端子区如图所示:

包括:电压输入端子 U_A、U_B、U_c、U_N;钳形电流互感器接口 (A 相钳、B 相钳、C 相钳);信号接口 (保留功能)。

仪器的右侧视图如右图,在后支架打开时,可露出下部的其他接口部分,包括以下三部分:

∞ 232 串行口(用于上传保存的数据 至计算机);同时还可用来更新程序;注意: 本接口与电脑的连接必须用随机配备的专 用通讯电缆,普通串口线不适合本接口的使 用。

∞ 充电器接口,用于连接充电器,当 仪器电量不足时将充电器接到此接口给仪 器进行充电。

So USB 接口,通过专用数据线可连接电脑,将仪器

此次午息电力科汉有限公司 Wuhan Huavi Power Jechnology Co... to

内存储卡做为大容量存储器使用。侧面图见右图。

so 仪器的外包装箱外型尺寸,如右图所示:

(二)、键盘操作

键盘共有 30 个键,分别为:开关、存储、查询、设置、切换、↑、↓、←、
→、, 、、、
、、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、</li

各键功能如下:

开关键:用来控制仪器工作电源的开启和关闭;使用方法是:开机一按下 此键并松开;关机一按住此键2秒钟以上(屏幕中央会显示"系统关机"字样) 然后松开。

↑、↓、←、→键:光标移动键;在主菜单中用来移动光标,使其指向某 个功能菜单,按确认键即可进入相应的功能;在参数设置功能屏下上下键用来 切换当前选项,左右键改变数值。另外,↓还可以用于显示子目录菜单。

♂键:确认键;在主菜单下,按此键显示菜单子目录,在子目录下,按下 此键即进入被选中的功能,另外,在输入某些参数时,开始输入和结束输入。

退出键:返回键,按下此键均直接返回到主菜单。

存储键:用来将测试结果存储为记录的形式。

查询键:在主菜单按下此键直接进入<磁盘查阅>功能屏。

Wuhan Huayi Power Technology Co., Ltd.

设置键:在主菜单按下此键直接进入<参数设置>功能屏。

切换键:保留功能,暂不用。

武汉华意电力科技有限公司

自检键: 仪器调试过程中用来烧字库, 此功能用户不需用到。

帮助键:在主菜单按下此键直接进入<帮助文件>功能屏。

数字(字符)键:用来进行参数设置的输入(可输入数字或字符)。

小数点键:用来在设置参数时输入小数点。

#键:保留功能,暂不用。

F1、F2、F3、F4、F5 键: 辅助功能键(快捷键)。用来快速进入辅助功能 界面或实现提示信息提示的相应功能。

当5分钟内无按键按下时液晶自动进入省电模式显示,按任意键可恢复显示。

四、液晶界面

1. 主菜单:

当开机后界面显示如右图所示。主 菜单共十二个选项,分别为:参数设置、 电气测试、谐波测试、频谱分析、波形 显示、矢量分析、CT 变比、历史数据、 国标查阅 移动友梯 磁盘查阅 系统

国标查阅、移动存储、磁盘查阅、系统校准。选择←、→、↑、↓键来改变选

项,选中后菜单名称反显,屏幕下端蓝条显示相关功能提示,按确定键进入相

- 13 -

应功能测试和设置;屏幕右上角显示出内置充电电池的剩余电量百分比,用户 可根据此数值来判断是否需要为仪器充电;电池左侧显示出当前实时的日期和 时间;时间左侧显示当前测试仪的电压和电流的测量档位,电压档位的改变为

自适应,电流档位的改变需进入"参数 设置"选项进行手动设置;屏幕左上角 显示仪器名称、仪器编号及软件版本。

2. "参数设置"界面:

参数设置界面如右图所示,此屏用 于调整试验前所需要确定的数据。包括:

PT 变比、CT 变比、接线方式、电流输入、额定电压、短路容量、供电容量、协议容量、设置日期、设置时间、变电站名、线路名称、文件名称、存储速率、 开始存储。

☞ PT 变比:指被测装置所用的电压互感器的变比数值。输入方法为:按确认键使数字变成红色,此时再按相应的数字键输入数据,完成后再按确认键结束。

SCT 变比:指被测装置所用的电流互感器的变比数值。输入方法为:按确认键使数字变成红色,此时再按相应的数字键输入数据,完成后再按确认键结束。

So 接线方式:指被测装置的接线联接方式,包括:二元件三角形接法、三

元件三角形接法、三元件星形接法几种情况。通过**←、→**键在几种方式间进行 切换,选定到所需方式。

∞ 电流输入:指用哪种方式进行电流的测量,包括: 5A 钳表测量方式、
25A 钳表测量方式、100A 中钳表测量方式、500A 中钳表测量方式、400A 大钳表测量方式(非标配)、2000A 大钳表测量方式(非标配),共6种选项。通过 ←、
→键在几种方式间进行切换,选定到所需方式。

∞ 额定电压:指被测装置的额定一次侧电压值。共有 0.38、6、10、35、
66、110、220kV 七个档位,按←、→键切换选择,选定到所需档位。

∞ 短路容量: 短路容量是指电力系统在规定的运行方式下,关注点三相短路时的视在功率,它是表征电力系统供电能力强弱的特征参数,其大小等于短路电流与短路处的额定电压的乘积。

∞ 供电容量: 供电系统的负荷, 一般是指用户降压变压器容量, 比如多少 千伏安。

∞ 协议容量:用电人申请,并经供电人核准使用电力的 最大功率或视在功率。

∞ 设置日期: 输入方法为: 按确认键使数字变成红色,此时再按相应的数字键输入数据,完成后再按确认键结束。如: 2013 年 1 月 12 日则输入 20130112 确认即可。

∞ 设置时间:输入方法为:按确认键使数字变成红色,此时再按相应的数字键输入数据,完成后再按确认键结束。如:11点45分07秒则输入114507确认即可。

∞ 变电站名:指试验现场所处的变电站名称,用于对所保存的结果进行区

- 15 -

6

山汉平息电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd.

分。由数字和字母构成,可任意组合。通过相应的数字/字母按键直接输入。输入方法为:按确认键使内容变成红色,再按相应的键输入内容,完成后再按确认键结束。

∞ 线路名称:指被测线路的编号。与"变电站名"一起用于对所保存的结果进行区分。由数字和字母构成,可任意组合。通过相应的数字/字母按键直接输入。输入方法为:按确认键使数字变成红色,再按相应的键输入内容,完成后再按确认键结束。

∞ 文件名称:指记录存储的文件名称。由数字和字母构成,可任意组合。 通过相应的数字/字母按键直接输入,文件的扩展名不用输入,程序将自动加上。

∞ 存储速率:指对测试数据保存的时间间隔,最小间隔为1分钟、最大间隔为5分钟。通过
 → 键在几种方式间进行切换,选定到所需间隔时间。

∞ 开始存储:指存储功能设置开关。当选择 "是"时存储功能打开,自动开始存储数据;当选择"否"时存储功能关闭,停止存储数据。

按确定键可进入相应设置,按退出键返回主菜单。

3. "电气测试"界面:

用来显示从互感器一次侧、二次 测量被测点的数据。右图显示一次侧 三相电压、电流幅值,各相电压、电 之间相位夹角;各相有功功率、无功 率、视在功率及总有功功率 P_h、及总

功功率 Q_h、总视在功率 S_h;零序电压 U_o、电流 I_o;正序电压 U₁、电流 I₁;负序

- 16 -

电压 U₂、电流 I₂; 电压和电流的不平衡度#U、#i; 实测频率、总功率因数。按 F1 键能将当前屏幕锁定, 便于读数, 按 F2 继续刷新, 按 F3 查看一次侧数据, 按 F4 切换到二次侧界面。按退出键返回主菜单。

4. "谐波测试"界面:

电压和电流谐波显示屏如右图所示: 此屏显示各相电压和电流信号中各次谐波 含量(从左到右依次表示 A、B、C 各相电 压,A、B、C 各相电流),其中 THD 为各相

Huayi Power Technology Co., Ltd.

				Ver3. No:12	000 xxx			5	i7.74V 1 iAQ 1	8-01-15 4:20:40	80	
THD TMS	0.00% 5 0.00V		0.00% 0.00V		0. 0.	00% 00V	0.00% 0.000A		0.00% 0.000A		0.00% 0.000A	
01 02 04 05 06 09 10 11 12 13 14 15 16 17 18 20 21		0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%		0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%		0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.000 0.000	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	$\begin{array}{c} 0. \ 0.00\\ 0.00\\ 0. \ 0.00\\ 0. \ 0.00\\ 0. \ 0.00\\ 0. \ 0.00\\ $	0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	0.000 0.000	0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
按	K F	1】	〔定,	L	下]	改变	范围,	【退	[出]	返回		

的电压或电流波形畸变率(即总谐波失真度),RMS为各相的电压或电流有效值, 01次为基波电压或电流(用实际幅值表示),以下依次为其它各次谐波的数值, 以有效值形式和基波的百分比两种形式表示,以表格的形式显示 1-63 次谐波。 可通过 ↑、↓键来切换(01-21)次、(22-42)次(43-63)次谐波含量的表 格。

按F1键能将当前屏幕锁定,便于读数, 按F2继续刷新数据。按退出键返回主菜单。

5."频谱分析"界面:

频谱分析界面如右图所示。此屏以柱 状图的形式显示出 A 相电压、B 相电压、C

相电压、A 相电流、B 相电流和C 相电流的谐波含量分布柱状图,相邻次数的

- 17 -

又华意电力科技有限公司

Power Technology Co., Ltd.

谐波含量柱用不同的颜色区分开,每10种颜色为一组,循环显示;因32次以上的谐波一般情况下用不到,我们在柱状图里只显示到32次。U_a-U_b-U_c-I_a-I_b-I_c-提示当前测量通道(可通过←、→键来改变所选通道),纵坐标刻度0%-10%表示各次谐波分量的百分比含量,基波含量始终对应到100%刻度(当所有次数的谐波含量都小于10%时进行放大显示,即以10%做为满刻度;当有一项以上的谐波含量大于10%时,以正常刻度显示,即以100%做为满刻度),横坐标的指示的是谐波的次数,右侧数值显示总谐波畸变率THD、有效值和1-64次各次谐波的数值(用↑、↓键来翻页)。无失真的信号应显示第一次谐波(基波)。测试时用U_a、U_b、U_c三个电压通道和I_a、I_b、I_c三个电流通道进行测量。

屏幕最下一行为提示行,提示可进行的操作。按F1 键能将当前屏幕锁定, 便于读数,按F2 继续刷新,可继续查看各相电压、电流的1~64 次谐波,按退 出键返回主菜单。

6."波形显示"界面

波形显示界面如右图所示。在此屏中可显示 出当前各个被测模拟量的实际波形,波形实时刷 新,能直观的显示出被测信号的失真情况(是否畸变、是否截顶),当前显示为 A、B、C 三相所有的电压电流的波形,用↑、↓键来切换不同的相别;可切换 为A相电压、电流的波形,B相电压、电流的波形,C相电压、电流的波形,A、 B、C 三相电压的波形,A、B、C 三相电流的波形。可以做为简单的示波器使用。

屏幕最下一行为提示行,提示可进行的操作。

7. "矢量分析"界面

矢量分析屏如右图所示,在此屏显示被测装置的实测矢量六角图,同时显示出三相电压(二元件时为两相)、三相电流(二元件时为两相)的矢量关系以及以 U_a(二元件时为 U_a)为参照的各个量之间的相位角。通过此屏可以直观的判断三相计量装置的接线是否正确,各相负荷的容、感性关系,上图所示为标准阻性负载时接线全部正确情况下的三相四线向量图。按 F1 键能将屏幕锁定,便于读数,按 F2 继续刷新。退出返回主菜单。

8. "CT 变比"界面

在此功能下,进行低压 CT 的变比和角差 测试。图中可见:屏幕中提示出一次电流和 二次电流测试应使用的钳表分别为:一次用 C 相中号钳表,二次用 A 相的 5A 小号钳表。钳

表不能用错,注意一次电流必须用中号钳表或大号钳表进行测量,否则可能会

- 19 -

超过仪器的电流量程。在参数设置中应按照一次电流所使用的钳表量程来设置。 下方分别显示出一次电流、二次电流、实测变比

9. "历史数据"界面

历史数据界面如右图所示。按 F1 键查看某 一历史时刻的电气参数,包括:各相电压、电 流,零序电压、电流,正序电压、电流,负序 电压、电流,电压、电流的不平衡度,各相有

Technology Co., Ltd.

功功率、无功功率,总有功功率、无功功率,频率、总功率因数,各相电压电流之间相位夹角及各相功率因数。按 F2 键查看 1~16 次电压和电流畸变率和谐波,按 F3 查看 17~32 次谐波, F4 查看 33~48 次谐波, F5 查看 49~64 次谐波。

屏幕最下端蓝条为提示行,按↑、↓键逐条浏览历史记录,←、→键快进 寻找,退出键返回主菜单。

10. "国标查询"界面

国标查询界面如右图所示为根据额 定电压、短路容量、供电容量、协议容 量(在"参数设置"里设置)设定值计 算出的 2~25 次电压电流的谐波国际标 赛(准,谐波数值低于这个标准为符合国际标准。

额定 供电	电压:10.0 容量:100.	OkV OOMVA	54_9 14:20:40 2222 短路容量:100.00M/VA 协议容量:100.99M/VA				
次数	电流	电压	次数	电流	电压		
02	26. 00A	1.60%	14	3.70A	1.60%		
03	20.00A	3.20%	15	4.10A	3.20%		
04	13.00A	1.60%	16	3.20A	1.60%		
05	20.00A	3.20%	17	6. 00A	3.20%		
06	8.50A	1.60%	18	2.80A	1.60%		
07	15.00A	3.20%	19	5.40A	3.20%		
80	6.40A	1.60%	20	2.60A	1.60%		
09	6.80A	3.20%	21	2.90A	3.20%		
10	5.10A	1.60%	22	2.30A	1.60%		
11	9.30A	3.20%	23	4.50A	3.20%		
12	4.30A	1.60%	24	2.10A	1.60%		
13	7.90A	3.20%	25	4.10A	3.20%		
按【退出	1]返回主	菜单					

57.74V 13-01-15 5A___Q 14:20:40

武汉华意电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd 11. "移动存储"界面

本界面用作将内置大容量数据存 储卡与计算机相连的功能,仪器可直接 做为 USB 存储设备使用。注意:一定要 将 USB 接口通过专用连接线(不是普通 的 USB 数据线)与电脑相连接后,才可 按 F5 键进行联机操作,否则可能会造 成长期等待的死机现象,那样必须关机才能结束死机。

Ver3.000 No:12xxx

KB 13-01-15 14:13:28 KB 12-12-28 12:11:14

按【退出】返回主菜单

成长为14内的20亿级家,加什边次八亿才能组来为

12. "磁盘查阅"界面

磁盘查阅界面如右图所示。此功 能屏用来查看仪器内部存储器的内 容,包括存储文件的名称、大小,总 的磁盘容量和剩余的可用存储空间。

13. "系统校准"界面

非用户使用,略。

五、使用方法

测试仪配有一条四芯的电压测试线、三只电流测试钳(根据需要可配备到-21-

武汉华意电刀科技有限公司

六只)。电压测试线用来接入被测电压信号,在现场用电流钳进行测试,每只电流钳分别对应一个钳表接口,不能互换,否则会影响测试精度,每只钳表中间 有一个圆标贴,显示出钳表的相别和极性(标N的一端为电流的流出端,在使 用接线要注意极性,接反会影响测试结果)。

在测试过程中要注意的问题:

 1、要在测试前插好电流测试钳,严禁先夹被测信号后插入电流钳插座, 这相当于电流测试钳二次开路,容易产生开路高压,损坏仪器。测试完成后要 先摘下所有电流测试钳再拔下与主机相连的插头。

2、测试钳为保证各通道精度,应一一对应,要把各电流钳正确插入唯一与之对应的插座。交换不同输入插座,会降低了测试精度,但交叉后一般测试精度也不会超出在±2%。

3、接入电压信号时测试线一定要先接到仪器的电压端子,然后再接到被测设备的电压端子;测试完成后一定要先摘下被测设备的电压接头,然后再拆除仪器侧的电压线。(此条尤为重要,反之可能引起大事故)

下面就不同的测试项目进行说明。

(一)、三相四线制接线方式设备电参量的测量

1、测试目的

检测被测设备的三路电压、三路电流的信号,通过测试数据来了解被测设 备的实时电压幅值、电流幅值、有功功率、无功功率、相位、频率以及各参量

武汉华意电力科技有限公司

之间的矢量关系的真实情况;可将六个参量的向量图同屏显示出来,从而确定 供电系统的运行情况,便于分析故障原因和线损原因。

2、测试方法

具体接线如图所示:在三相四线制 接线方式时用黄色导线联接被测设备 的 A 相电压和仪器的 A 相电压端子、绿 色导线联接被测设备的 B 相电压和仪 器的 B 相电压端子、红色导线联接被测 设备的 C 相电压和仪器的 C 相电压端

子; 三只钳形电流互感器用来测量被测设备电流的 A、B、C 三相, 接好线后进入"测试参数"屏查看测量结果。

(二)、三相三线制接线方式设备电参量的测量

1、测试目的

检测被测设备的二路电压、二路电流 的信号,通过测试数据来了解被测设备的 实时电压幅值、电流幅值、有功功率、无 功功率、相位、频率以及各参量之间的矢 量关系的真实情况;可将四个参量的向量 图同屏显示出来,从而确定供电系统的运

- 23 -

Wuhan Huayi Power Technology Co., Ltd. 行情况,便于分析故障原因和线损原因。 2、测试方法

具体接线如图所示: 在三相三线制接线方式时只用三根电压线,其中黄色 导线联接被测设备 A 相和仪器的 A 相电压端子、绿色导线联接被测设备的 B 相 电压和仪器的 N 相电压端子(注意不是 B 相)、红色导线联接被测设备的 C 相电 压和仪器的 C 相电压端子; A、C 两只钳形电流互感器用来测量被测设备电流的 A、C 两相,接好线后进入"测试参数"屏查看测量结果。

(三)、波形显示测量部分

1、测试目的

通过本项目可以显示各参量的波形,了解各参量之间的相位关系(超前或 滞后),观察波形的畸变情况,分析畸变产生的原因,PT和CT有无过负荷的情况。

2、测试方法

根据被测设备的接线方式的不同而进行不同的接线:

三相四线接线方式的设备按照三相四线制设备测试接线图进行接线;

三相三线接线方式的设备按照三相三线制设备测试接线图进行接线。

接好线后进入"波形显示"界面进行测试。

(四)、频谱分析测量部分

1、测试目的

武汉华意电力科技有限公司

本功能用来显示各相电压参量、各相电流参量1-32次谐波含量的柱状图 以及各参量(1-64次)谐波的含量百分比,总谐波失真度等指标,以此来判 断该相电压或电流电能质量的好坏。

2、测试方法

根据被测设备的接线方式的不同而进行不同的接线:

三相四线接线方式的设备按照三相四线制设备测试接线图进行接线:

三相三线接线方式的设备按照三相三线制设备测试接线图进行接线。

接好线后进入"频谱分析"界面进行测试。

(五)、电压谐波分析部分

1、测试目的

本功能用来显示三路电压参量 2-64 各次谐波含量的数值和百分比含量, 以此来判断被测电压信号电能质量的好坏。

2、测试方法

具体接线如图所示:在本项目中同 时接入三相电压信号。将电压测试线的 黄、绿、红、黑四种颜色分别对应被测 信号的 A、B、C、N 四条相线(当 PT 二 次采用三线制接法时将被测设备的 B 相 电压接到仪器的 Un 端子,只用三根电压 线即可)。接好线后进入"电压谐波"屏

电压谐波测试接线图

- 25 -

武汉华意电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd 查看测量结果。

(六)、电流谐波分析部分

1、测试目的

本功能用来显示三路电流参量 2-64 各次谐波含量的数值和百分比含量, 以此来判断被测电流信号电能质量的好坏。

2、测试方法

具体接线如图所示: 在本项目中同 时接入三路电流信号。用A、B、C三只 钳形电流互感器分别来测量被测设备电 流回路的A、B、C三相,(当被测设备为 三相三线接线方式时只用到A、C两相的 钳表)接好线后进入"电流谐波"屏查 看测量结果。

(七)、不平衡度测量部分

1、测试目的

本功能用来显示各分相电压幅值和3倍零序电压3U0、零序电压U0、正序 电压U1、负序电压U2、电压不平衡度数值#u;各分相电流幅值和3倍零序电 流3I0、零序电流I0、正序电流I1、负序电流I2、电流不平衡度数值#i。以 此来评价电压、电流不平衡对供电质量的影响。

2、测试方法

」成次十总电力科及自限公司 /uhan Huayi Power Technology Co., Ltd

具体接线方式按右图进行接线:用 黄色导线联接被测设备的A相电压和仪 器的A相电压端子、绿色导线联接被测 设备的B相电压和仪器的B相电压端子、 红色导线联接被测设备的C相电压和仪 器的C相电压端子; 三只钳形电流互感 器用来测量被测设备电流的A、B、C 三

相, 接好线后进入"不平衡度"屏查看测量结果。

六、电池维护及充电

仪器采用高性能锂离子充电电池做为内部电源,操作人员不能随意更换其他类型的电池,避免因电平不兼容而造成对仪器的损害。

仪器须及时充电,避免电池深度放电影响电池寿命,

正常使用的情况下尽可能每天充电(长期不用最好在一个月内充一次电), 以免影响使用和电池寿命,每次充电时间应在6小时以上,因内部有充电保护 功能,可以对仪器连续充电。

每次将电池从仪器中取出后仪器内部的电池保护板自动进入保护状态,重 新装入电池后,不能直接工作,需要用充电器给加电使之解除保护状态,才可 正常工作。

七、注意事项

1、在测量过程中一定不要接触测试线的金属部分,以避免被电击伤。

2、测量接线一定要严格按说明书操作,确保人身安全。

3、最好使用有地线的电源插座。

4、不能在电压和电流过量限的情况下工作。

5、各钳表一定要与面板上相应的插座一一对应,否则会影响测试结果。

6、电压线和钳表接入时一定要按照先接仪器侧再接到被测装置的原则,拆除时一定要按照先拆装置侧再拆仪器侧的原则进行。

7、每次使用完毕注意一定要关闭工作电源开关,因有时液晶背光自动进入 省电模式后,只是液晶屏不显示,仪器还在正常工作,所以必须关闭工作电源 开关。

8、在进行长时监测时,一定要连接好电源线,否则内部电源将被耗尽,无 法完成监测。

ELECTRICAL PRODUCTS Provide first–class electrical

measurement products

全国统一热线:400-060-1718

电力试验设备研发生产供应商

ELECTRIC TEST EQUIPMENTS R&D MANUFACTURER

武汉华意电力科技有限公司 Wuhan Huayi Power Technology Co., Ltd.

\$ 售前: 027-87455965 售后: 027-87455183

🔇 www.wh-huayi.com

🖂 whhuayi@126.com

武汉市东湖新技术开发区高新四路 40 号葛洲坝(集团)太阳城工业园 11 栋

www.wh-huayi.com